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ABSTRACT 
A simple convection algorithm for simulation of time-dependent supersonic and hypersonic flows of a 
perfect but viscous gas is described. The algorithm is based on conservation and convection of mass, 
momentum and energy in a grid of rectangular cells. Examples are given for starting flow in a shock-tube 
and oblique shocks generated by a wedge, at Mach numbers up to 30.4. Good comparisons are achieved 
with well-known perfect gas flows. 
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INTRODUCTION 

Prediction of supersonic and hypersonic flows continues to be a significant problem, despite a 
great deal of work over many years. Some recent contributions have been made by, for example, 
Boris and Book1, Löhner et al.2, Chakravarthy et al.3, Yee et al.4 and Schmidt and Jameson5. 
Typical computation methods for the supersonic flow problem assume that the variables of the 
problem are continuous functions of space and time. Shocks are clear violations of the assumption 
of continuity. The most superficial acquaintance with Fourier analysis indicates the way in which 
a set of continuous functions will represent a discontinuity: by a series of wiggles around the 
discontinuity which decrease in amplitude with distance from the shock. The typical shock 
prediction demonstrates this behaviour perfectly. The more advanced algorithms include 
correction to suppress this behaviour. The traditional method for the prediction of supersonic 
flows is the method of characteristics. Based on the hyperbolic nature of the governing equations, 
this method allows reduction of the number of dimensions of the partial differential equation 
problem by one. Two-dimensional problems convert into the solution of ordinary differential 
equations along characteristic lines. The disadvantage of this method is the complexity of the 
process of evaluating the location of solution points from the intersection of the characteristic 
lines. A variant of the method of characteristics employs a fixed grid and assumes that the 
characteristics are piecewise straight. As a consequence the shocks are inaccurately located. 

The error made by the classical type of algorithm is the assumption of continuity in 
discontinuous functions. The scheme advanced in this paper makes the opposite error: the 
solution functions are assumed to be discontinuous but the discontinuities are located in the 
wrong places. The algorithm used employs a primitive treatment of conserved flow quantities. 
This technique gives good results for supersonic flows described here, and promises relatively 
simple extension to reacting flows. The description of the algorithm will be preceded by a short 
description of a typical supersonic flow problem suitable for solution by this method, to convey 
the scope of the algorithm. 
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TYPICAL SUPERSONIC FLOW PROBLEMS 

The flow problems described in this paper are typical of those in the literature. A sample 
geometry, which exhibits most of the types of boundary condition in a fairly general form, is 
given in Figure 1, for flow over a wedge of half-angle 18.4°. The fluid enters the computational 
domain at the upstream surface A with given values of velocity, density, pressure, temperature 
and so on. 

A feature which often appears is a symmetry surface or slip plane (B in Figure 1). There is 
no flow across this surface, no shear stress and no diffusion of energy or material. The flow 
values in any cell are, of course, only a representative average of the point values so non-zero 
velocities into the computational domain do not violate the condition of zero flow through the 
boundary. The velocity in the surface layer is required to be zero or into the domain, and no 
convection of mass is allowed across the boundary. 

FREE DOWNSTREAM BOUNDARY CONDITIONS 

The free downstream boundary condition, D in Figure 1, is by far the most difficult to implement 
successfully. The downstream condition which has proved successful with the algorithm described, 
in the test cases given, attempts to estimate the flow conditions outside the boundary from those 
just inside the boundary by projecting the contours of the flow variables across the boundary. 
This condition works well with the algorithm described here for both subsonic and supersonic 
outflow, as well as on the free stream boundary where the calculated outflow is approximately 
zero. This type of boundary condition would probably be unsuccessful in subsonic outflows 
with gradients in the flow, as would occur in a subsonic nozzle flow. 

CONSERVATION ALGORITHM 

The algorithm used to calculate the flow values is described fully in Milthorpe6, together with 
a description of the computational resources required. A brief description is given here to indicate 
the basis of the method. The algorithm is based on conservation of mass, momentum and energy 
as the simulation proceeds over discrete timesteps. The flow domain is divided into rectangular 
cells. Each cell contains, at any given time, a certain block of material which possesses a certain 
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momentum and energy. In the course of the next timestep this block, with its associated mass, 
momentum and energy, is convected a small distance. It may also gain or lose mass, momentum 
or energy by diffusion and the action of pressure gradients. The algorithm evaluates the changes 
in these quantities for the material block. The process is illustrated in Figure 2 for convection 
with positive u and v velocities. The letters A, B, C, D represent the proportion of the material 
block located in a particular cell at the end of a timestep. These proportions of the quantities 
in the material block are allocated to their respective cells. When the process has been performed 
for all cells the new distribution of mass, momentum and energy is available. From this 
distribution updated values of density, velocity, pressure and temperature can be derived. 

The algorithm used is based on an elementary treatment of conservation of flow properties. 
It is shown below to give accurate predictions of elementary compressible flows, although there 
are several algorithms available which give better results for' perfect gas flows. The algorithm 
used here has the advantage that its simple treatment of conserved flow properties promises to 
make extension to multi-species flows and reacting flows a relatively simple process. 

STABILITY LIMITS 

Two limits are imposed on the size of the time-steps by stability considerations. The first is that 
the Courant number is less than one. The second limit is that due to over-prediction of diffusion, 
as described by Roache7, which restricts the time-step At to: 

where Δx is the step size, ρ the density and k the diffusion coefficient for any quantity. 

TRANSIENT NORMAL SHOCK 

The algorithm has been tested with a number of flows involving unsteady normal shocks at a 
range of Mach numbers. These flows represent a one-dimensional jet blowing into still gas: a 
typical established flow geometry is shown in Figure 3. The flow conditions were deliberately 
selected to give a mis-match between upstream and downstream values. As the density ratio 
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across the shock system exceeds the limiting value, equal to 6 for air, the compression takes 
place in two stages. There is no limit on the density rise across the contact surface, as no gas 
flow occurs. The intermediate pressure, p2 referring to the regions 1, 2, 3, 4 shown in Figure 3, 
is given by8: 

The other intermediate values follow from the pressure by the standard perfect gas equations9. 
It can be seen from Figure 3 that, although the flow is one-dimensional, the algorithm is applied 
to a two-dimensional domain, with a symmetry plane on the lower surface and a free stream 
boundary on the upper surface, where the flow is projected to infinity. These conditions were 
selected to provide a thorough test for the algorithm. Results obtained for two widely separated 
Mach numbers are shown in Figures 4 and 5. In each Figure the perfect gas solution at the 

. simulated time is superimposed on the calculated result. The grid used in the computations was 
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498 cells long by 28 cells wide, and the cells were squares of side 0.5. The abscissa in the Figures 
has a scale of Reynolds number: 

where ρ0 is the inlet density, u0 the inlet velocity, μ the dynamic viscosity of the gas and x the 
distance from the inlet boundary. 

The non-dimensional time tnd shown is given by: 

where t is the time, and a0 the inlet speed of sound. The wide variation in the Reynolds number 
scales and the non-dimensional times is due to the range of viscosities employed in the different 
tests. 
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The leading shock is sharply defined in all cases, while the contact surface and trailing shock 
are smeared out to some extent. In simulations begun with a sharply defined contact surface 
and trailing shock, the smeared result develops rapidly. The smearing is a product of the 
algorithm, but it remains to be checked whether the effect is caused by the simulated viscosity 
or by numerical diffusion. 

The results shown demonstrate that, apart from the smearing of the contact surface and 
trailing shock, the algorithm accurately models the perfect gas theory at Mach numbers up to 
at least 30.4. The algorithm has not been tested at higher Mach numbers. 

EXAMPLE PROBLEM 

The problem shown in Figure 1 has been used as an example to test the effectiveness of the 
algorithm. The particular reference values used were: 

u0 = 3.0 (5) 
ρ0 = ρ0 = T0 = 1.0 (6) 

and the gas was taken as a perfect, but viscous, gas with: 
γ = 1.4 (7) 

The viscosity, which varies with temperature according to Sutherland's law, was set at the lowest 
value which would give stable solutions. 

The steady state upstream Mach number M0 of the flow is thus 2.54. The deflection angle θ 
in inviscid flow would be 18.4°. The angle of the oblique shock β, and the downstream pressure 
p1 density ρ1 temperature T1 and Mach number M1 are standard results9. 

Contours of pressure and temperature for Mach = 2.54 are shown in Figures 6-9. Results are 
given while the flow is developing and when a steady state has been reached. The results are 
very similar to the inviscid predictions except for the presence of the boundary layer. There is 
a small curved detached shock at the apex of the wedge. The presence of the boundary layer 
results in a deflection angle slightly larger than that due to the wedge alone, and hence the flow 
variable after the shock do not have the inviscid values. A test of the accuracy of the algorithm 
is to examine the change in flow variables normal to the oblique shock, and compare these with 
the corresponding inviscid solution. This has been done in Figure 10. The shock angle was 
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measured as 43°. It can be seen that the computation is very close to the inviscid values for this 
deflection angle near the shock. 

EXPANSION OVER REARWARD FACING STEP 

The flow over a rearward facing step is a popular problem in both compressible and 
incompressible fluid dynamics. The particular configuration shown here was proposed by 
Takayama10 for Euler codes and shows a shock wave diffracted over the step. Relative to the 
initial conditions, the flow conditions at the upstream inlet are pressure ratio 2.4583, density 
ratio 1.86207. The velocity at the upstream inlet is selected to give an incident shock Mach 
number of 1.77 and the gas modelled is a perfect gas with γ = 1.4. The Reynolds number based 
on the length upstream of the step is 765. As a slip boundary condition is applied at the walls 
no boundary layer is formed and the Reynolds number scale is only significant for the thickness 
of the shock. The density contours calculated are given in Figure 11. The grid used was 232 by 
232 cells. 

CONCLUSION 

The algorithm described gives satisfactory simulations of viscous, perfect gas flows at Mach 
numbers ranging from low supersonic to hypersonic values. The algorithm has the potential to 
be developed to incorporate real gas effects created by dissociation and recombination of 
molecules in high enthalpy flows, and further work will proceed in this direction. 
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